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Abstract

The influence of Hall current and heat transfer on the magnetohydrodynamic (MHD) flow of an Oldroyd-B fluid is

investigated. The fluid is between two infinite disks rotating about non-coaxial axes normal to the disks in the presence

of a uniform transverse magnetic field. The flow is due to a constant velocities of eccentric rotating disks. Exact solu-

tions are derived for the velocity, force and torque exerted by the fluid on one of the disk and temperature distribution.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years the theoretical study of MHD channel

flows has been a subject of great interest due to its wide-

spread applications in designing cooling systems with

liquid metals, petroleum industry, purification of crude

oil, polymer technology, centrifugal separation of matter

from fluid, MHD generators, pumps, accelerators and

flow meters. Various workers [1–6] have analyzed the

interesting problems in this direction. More recently,

Ersoy [7] discussed the flow due to a pull with constant

velocities of eccentric rotating disks with the same angu-

lar velocity. In another paper Ersoy [8] examined the

MHD flow of a non-Newtonian fluid between eccentric

rotating disks.

Unfortunately, the results of the above investigations

cannot be applied to the flow of ionized gases. In an ion-

ized gas where the density is low and/or the magnetic
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field is very strong, the conductivity normal to the mag-

netic field is reduced due to the free spiraling of electrons

and ions about the magnetic lines of force before suffer-

ing collisions; also, a current is induced in a direction

normal to both the electric and magnetic fields. The phe-

nomena, well known in the literature, is called the Hall

effect. The study of magnetohydrodynamic flows with

Hall currents has important engineering applications in

problems of magnetohydrodynamic generators and of

Hall accelerators as well as in flight magnetohydrody-

namics. Sato [9], Sherman and Sutton [10], Hossain

[11], Hossain and Mohammad [12], Hossain and Rashid

[13], Pop [14], Raptis and Ram [15] and Ram [16] stud-

ied the Hall effects.

In this paper, we generalize the work of Ersoy [7,8]

and investigate the effects of Hall current and heat trans-

fer on the steady flow of an electrically conducting, Old-

royd-B and incompressible fluid. The fluid is between

two electrically insulating disks maintained at two con-

stant but different temperatures. The flow is due to a pull

with constant velocities of eccentric rotating infinite

disks and an external uniform magnetic field is applied
ed.
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Nomenclature

A1 Rivlin-Ericksen tensors

B0 applied magnetic field

Cp specific heat at constant pressure

D/Dt upper convected derivative

e electric charge

E total electric field current

Ec Eckert number

I unit tensor

M Hartmann number

ne number of density of electrons

p pressure

pe electron pressure

p0 reference pressure

q heat flux vector

r0 radius of the disk

R Reynolds number

r radiant heating

S deviatoric stress tensor

T transpose

T Cauchy stress tensor

u, v, w velocity components

U1 disk velocity in x-direction

U2 disk velocity in y-direction

V velocity vector

x, y, z coordinate axis

X, Y, Z components of the force

Greek symbols

a elastic number

a1 elasticity

a2 cross-viscosity

h dimensionless temperature

k surface of the disk

k1 relaxation time

k2 retardation time

l dynamic viscosity

lm magnetic permeability

m kinematic viscosity

q density

r electrical conductivity

se electron collision time

si ions collision time

s1 temperature at the lower disk

s2 temperature at the upper disk

s temperature

/ Hall parameter

v torque

w stream function

xi cyclotron frequency of ions

xe cyclotron frequency of electrons

x vorticity vector

X angular velocity
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perpendicular to the disks. The magnetic Reynolds num-

ber is assumed small so that the induced magnetic field is

neglected. Firstly, the formulation and solution of the

problem in regard to the velocity distribution is given.

Secondly, the heat transfer characteristics are discussed

and then the expressions for force and torque exerted

by the fluid on the bottom disk are constructed. Finally

the numerical discussions and conclusions are given.
2. Mathematical formulation

Let us consider two infinite disks at z = h and z = �h
rotating around z-axes respectively with the same angu-

lar velocity X. The two non-coincident axes are sepa-

rated by an instance 2l. The region between the two

disks is occupied by an incompressible and electrically

conducting Oldroyd-B fluid. The magnetic field is ap-

plied perpendicular to the disks. The disks at z = h and

z = �h are pulled with velocities U and �U respectively.

Thus, the boundary conditions become

u ¼ �Xðy � lÞ þ U 1; v ¼ Xxþ U 2; w ¼ 0 at z ¼ h;

ð2:1Þ
u ¼ �Xðy þ lÞ �U 1; v ¼ Xx�U 2; w ¼ 0 at z ¼ �h:
ð2:2Þ

The velocity field is chosen as

u ¼ �Xy þ f ðzÞ; v ¼ Xxþ gðzÞ; w ¼ 0: ð2:3Þ

The MHD equations governing the steady flow of an

incompressible fluid are

q½ðV � rÞV	 ¼ divTþ J
 B; ð2:4Þ

r � V ¼ 0; ð2:5Þ

r � B ¼ 0; r
 B ¼ lmJ; r
 E ¼ 0 ð2:6Þ

in which q is the density, V is the velocity, J is the cur-

rent density, B is the total magnetic field, lm the mag-

netic permeability, E the total electric field current and

r the electrical conductivity of the fluid. Making refer-

ence to Cowling [17], when the strength of the magnetic

field is very large, the generalized Ohm�s law is modified

to include the Hall current so that

Jþ xese
B0

ðJ
 BÞ ¼ r Eþ V
 Bþ 1

ene
rpe

� �
; ð2:7Þ
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where xe is the cyclotron frequency of electrons, se is the
electron collision time, e is the electron charge, ne is the

number of density of electrons, and pe is the electron

pressure. The ion-slip and thermoelectric effects are

not included in (2.7). Further, it is assumed that

xese � O(1) and xisi� 1 where xi and si are the cyclo-

tron frequency and collision time for ions respectively.

The constitutive equation of an Oldroyd-B fluid is

T ¼ �pIþ S ð2:8Þ

in which

Sþ k1

DS

Dt
¼ l 1þ k2

D

Dt

� �
A1 ð2:9Þ

with p being the pressure, I the unit tensor, L the gradi-

ent of the velocity vector, S the deviatoric stress tensor,

l the dynamic viscosity, k1 the relaxation time, k2 the

retardation time, A1 is the Rivlin-Ericksen tensor de-

fined by

A1 ¼ Lþ LT; L ¼ rV; ð2:10Þ

and T is the transpose. The upper convected time deriv-

ative D/Dt, operating on S, is defined as

DS

Dt
¼ oS

ot
þ ðV � rÞS� SL� LTS: ð2:11Þ

When k1 = k2 = 0 Eq. (2.9) reduces to the classical line-

arly viscous model and when k2 = 0 Eq. (2.9) becomes

a Maxwell model. For k1 = 0, lk2 = a1, it reduces to sec-

ond-grade fluid.

As it is seen that the velocity field satisfies Eq. (2.5)

which is nothing else than the incompressibility

condition and from Eqs. (2.3), (2.9), (2.10) and (2.11)

we have

sxx ¼ l
2ðk1 � k2Þbð1þ k2

1X
2Þf 02 þ 3k2

1X
2g02 � 3k1f 0g0c

ð1þ k2
1X

2Þð1þ 4k2
1X

2Þ
;

ð2:12Þ

sxy ¼ l
ðk1 � k2Þb2ð1� 2k2

1X
2Þf 0g0 þ 3k1Xðf 02 � g02Þc

ð1þ k2
1X

2Þð1þ 4k2
1X

2Þ
;

ð2:13Þ

syy ¼ l
2ðk1 � k2Þb3k1Xf 0ðg0 þ k1Xf 0Þ þ ð1þ k2

1X
2Þg02c

ð1þ k2
1X

2Þð1þ 4k2
1X

2Þ
;

ð2:14Þ

sxz ¼ l
ð1þ k1k2X

2Þf 0 þ ðk2 � k1ÞXg0

ð1þ k2
1X

2Þ
; ð2:15Þ

syz ¼ l
ð1þ k1k2X

2Þg0 þ ðk1 � k2ÞXf 0

ð1þ k2
1X

2Þ
; ð2:16Þ

szz ¼ 0; ð2:17Þ
where we have assumed that the stress s also depends on

z and satisfy sij = sij(z). With the help of Eqs. (2.4) and

(2.6)–(2.8) we can write the following scalar equations:

op
ox

¼ qX½Xxþ gðzÞ	 þ o

oz
sxz

þ rB2
0ð1þ i/Þ
1þ /2

Q
2h

� f
� �

; ð2:18Þ

op
oy

¼ �qX½�Xy þ f ðzÞ	 þ o

oz
syz

þ rB2
0ð1þ i/Þ
1þ /2

P
2h

� g
� �

; ð2:19Þ

op
oz

¼ 0; ð2:20Þ

P ¼
Z h

�h
gðzÞdz; Q ¼

Z h

�h
f ðzÞdz; ð2:21Þ

where / = xese is the Hall parameter and Eq. (2.20) indi-

cates that p is not a function of z.

The boundary conditions in terms of f and g can be

written as

f ðhÞ ¼ Xlþ U 1; gðhÞ ¼ U 2; ð2:22Þ

f ð�hÞ ¼ �Xl� U 1; gð�hÞ ¼ �U 2: ð2:23Þ
3. Exact solution

Differentiating Eqs. (2.12) and (2.13) with respect to

z, making use of Eq. (2.14), and then integrating the

resulting expression we obtain the following equations:

o

oz
sxz þ qXg � Hf ¼ C1; ð3:1Þ

o

oz
syz � qXf � Hg ¼ C2; ð3:2Þ

where C1 and C2 are arbitrary constants and

H ¼ rB2
0ð1þ i/Þ
1þ /2

: ð3:3Þ

The pressure field is obtained by integrating Eqs. (2.12)

and (2.13)

p ¼ p0 �
1

2
X2ðx2 þ y2Þ þ ½C1 þHQ=2h	xþ ½C2 þHP=2h	y;

ð3:4Þ

where p0 is a reference pressure. We see from the above

equation that non-zero values of C1 þ HQ=2h and

C2 þ HP=2h would give rise to a pressure gradient be-

tween the disks with a corresponding Poiseuille type

flow. In order to remove the possibility of a flow of this

type and at the same time to ensure the symmetry of the

velocity distribution about the disk z = 0, we put
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C1 ¼ �HQ=2h; C2 ¼ �HP=2h ð3:5Þ
and Eqs. (2.15), (2.16), (3.1) and (3.2) yield

l
ð1þ k1k2X

2Þ þ iðk1 � k2ÞX
ð1þ k2

1X
2Þ

F 00 � iXF � HF

þ P
2h

þ Q
2h

� �
H ¼ 0; ð3:6Þ

where F = f + ig.

The boundary value problem in dimensionless varia-

ble takes the following form:

C00ðgÞ � ½M2ð1þ i/Þ þ iRð1þ /2Þ	ð1þ D2Þ
½ð1þ aD2Þ þ iDð1� aÞ	ð1þ /2Þ

CðgÞ

¼ �M2ð1þ i/Þð1þ D2Þ
½ð1þ aD2Þ þ iDð1� aÞ	ð1þ /2Þ

ðQþ iP Þ
2hXl

; ð3:7Þ

Cð1Þ ¼ ½ð1þ V 1Þ þ iV 2	; Cð�1Þ ¼ �½ð1þ V 1Þ þ iV 2	;
ð3:8Þ

where

g ¼ z=h; CðgÞ ¼ F ðzÞ=Xl ¼ ðf þ igÞ=Xl;
/ ¼ xese; R ¼ qXh2=l;

M2 ¼ rB2
0h

2=l; D ¼ Xk1; a ¼ k2=k1;

V 1 ¼ XlU 1; V 2 ¼ XlU 2;

where R is the Reynolds number, M is the Hartmann

number, D is the Deborah number (measure of the fluid

elasticity) and a the elastic number.

The solution of Eq. (3.7) satisfying the boundary

conditions (3.8) is given by

CðgÞ ¼ ½ð1þ V 1Þ þ iV 2	
sinhm1g
sinhm1

; ð3:9Þ

where

m1 ¼
½M2ð1þ i/Þ þ iRð1þ /2Þ	ð1þ D2Þ
½ð1þ aD2Þ þ iDð1� aÞ	ð1þ /2Þ

: ð3:10Þ

Equating real and imaginary parts of above expres-

sion we obtain

f
Xl

¼

ð1þ V 1Þ
sinh n1g cos n2g sinh n1 cos n2

þ cosh n1g sin n2g cosh n1 sin n2

� �

�V 2

cosh n1g sin n2g sinh n1 cos n2

� sinh n1g cos n2g cosh n1 sin n2

� �
2
6664

3
7775

D
;

ð3:11Þ

g
Xl

¼

ð1þ V 1Þ
cosh n1g sin n2g sinh n1 cos n2

� sinh n1g cos n2g cosh n1 sin n2

� �

�V 2

sinh n1g cos n2g sinh n1 cos n2

þ cosh n1g sin n2g cosh n1 sin n2

� �
2
6664

3
7775

D
:

ð3:12Þ
In above equations

D ¼ sinh2n1cos
2n2 þ cosh2n1sin

2n2;

n1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ e21

q
þ d1

2

c

a2 þ b2

vuut
;

n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ e21

q
� d1

2

c

a2 þ b2

vuut
;

a ¼ 1þ aD2; b ¼ Dð1� aÞ;
c ¼ 1þ D2; �a ¼ 1þ /2;

d1 ¼
1

�a
½M2aþ bð/M2 þ R�aÞ	;

e1 ¼
1

�a
½að/M2 þ R�aÞ �M2b	:

ð3:13Þ
4. Heat transfer

In this section we apply heat transfer analysis by

assuming that the disks at z = h and z = �h are heated

and that the heat is transferring from disks to the fluid.

The law of conservation of energy is

q
de
dt

¼ T � L � divqþ qr; ð4:1Þ

where s is the temperature, q (=�Kos/oz, K being the

thermal conductivity) is the heat flux vector and r is

the radial heating (taken here to be zero), e (=Cps, where
Cp is the specific heat) is the specific internal energy. The

boundary conditions on the flow field are

s ¼ s1 at z ¼ �1; s ¼ s2 at z ¼ 1; ð4:2Þ

where s1 and s2 are temperatures of the disks.

Eq. (4.1) is now written as

qCp
ds
dt

¼ K
d2s
dz2

þ df
dz
sxz þ

dg
dz
syz; ð4:3Þ

where sxz and syz are defined in Eqs. (2.15) and (2.16).

Eq. (4.3) for steady case have the following form:

d2h
dg2

¼ � aEcP r
c

d�f
dg

� �2

þ d�g
dg

� �2
" #

; ð4:4Þ

where �f ¼ f =Xl, �g ¼ g=Xl, Pr = qCpm/K is the Prandtl

number, Ec = (Xl)2/(s1 � s2)Cp is the Eckert number and

h ¼ s � s2
s1 � s2

;

where h is the dimensionless temperature. We assume

s1 > s2, so that Ec > 0 and which shows that heat is

transferring from disk to the fluid.

From Eq. (3.9) we have

dC
dg

dC
dg

¼ d�f
dg

� �2

þ d�g
dg

� �2

; ð4:5Þ
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where C is the complex conjugate of C. Using Eq. (4.5)

in Eq. (4.4) we get

d2h
dg2

¼ � aEcP r
c

½ð1þ V 1Þ2 þ V 2
2	ðn

2
1 þ n2

2Þ
coshð2n1Þ � cosð2n2Þ


 ½coshð2n1gÞ þ cosð2n2gÞ	: ð4:6Þ

The boundary conditions on upper and lower disks

when they are heated are

hð�1Þ ¼ 1; hð1Þ ¼ 0: ð4:7Þ

The solution of Eq. (4.6) that satisfies the boundary con-

ditions (4.7) is

hðgÞ ¼ 1

2
� g
2
þ aEcP r

c
bð1þ V 1Þ2 þ V 2

2cðn
2
1 þ n2

2Þ
coshð2n1Þ � cosð2n2Þ


 coshð2n1Þ � coshð2n1gÞ
4n2

1

( )"

� cosð2n2Þ � cosð2n2gÞ
4n2

2

( )#
: ð4:8Þ
5. The force and the torque

The component of the force exerted by the fluid on

the bottom disk are
Fig. 1. The variation of �f with g for R = 10, D = 1, a = 1/9, / = 0, M

V2 = 4 in (c).
X ¼
Z

k
T xzð�hÞdk;

Y ¼
Z

k
T yzð�hÞdk;

Z ¼
Z

k
T zzð�hÞdk

ð5:1Þ

in which k denotes the surface of the disk of radius r0.

The force exerted by the fluid on the bottom disk is

equal to that on the top disk. We have

X ¼ pr20sxzð�hÞ;
Y ¼ pr20syzð�hÞ;

Z ¼ 1

2
qpX2r40Z;

ð5:2Þ

where

sxzð�hÞ ¼
l
c
½af 0 � bg0	;

syzð�hÞ ¼
l
c
½bf 0 þ ag0	;

szzð�hÞ ¼ 0;

ð5:3Þ

1

Xl
df ð�hÞ

dz

¼

ð1þ V 1Þfn1 cosh n1 sinh n1 þ n2 cos n2 sin n2g
�V 2fn2 cosh n1 sinh n1 � n1 cos n2 sin n2g

� �
D

;

ð5:4Þ
= 0, 5, 10: V1 = 0, V2 = 0 in (a); V1 = 1, V2 = 0 in (b); V1 = 0,



Fig. 2. The variation of �f with g for R = 10, D = 1, a = 1/9,M = 0, 5, 10: V1 = 0, V2 = 0, / = 2.5 in (a); V1 = 0, V2 = 4, / = 2.5 in (b);

V1 = �0.5, V2 = / = 0 in (c).

Fig. 3. The variation of �g with g for R = 10, D = 1, a = 1/9, / = 0, M = 0, 5, 10: V1 = 0, V2 = 0 in (a); V1 = 0.5, V2 = 0 in (b); V1 = 0,

V2 = 0.1 in (c).
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1

Xl
dgð�hÞ

dz

¼

ð1þ V 1Þfn2 cosh n1 sinh n1 � n1 cos n2 sin n2g
þV 2fn1 cosh n1 sinh n1 þ n2 cos n2 sin n2g

� �
D

;

ð5:5Þ

Z ¼ � q0

1
2
qX2r20

þ 1

2

" #
: ð5:6Þ

On the bottom disk the torque exerted by the fluid is

v ¼
Z

k
½xT yzð�hÞ � yT xzð�hÞ	dk: ð5:7Þ
Fig. 4. The variation of �g with g for R = 10, D = 1, a = 1/9,M = 0, 5,

Fig. 5. The variation of h with g for R = 10, D = 1, a = 1/9,M = 1, Ec
/ = 2.5 in (b); V1 = 0, V2 = 0.5, / = 2.5 in (c).
Since Tyz(�h) = syz(�h) and Txz(�h) = sxz(�h) it follows
that

v ¼ 0: ð5:8Þ
6. Numerical results and discussions

The unknown functions f/Xl and g/Xl given by Eqs.

(3.11) and (3.12) in velocity components are plotted

against g in Figs. 1–4. Also the dimensionless tempera-

ture is displayed against g in Figs. 5 and 6. Of particular

interest here are the effects of M, R, D, a, /, Ec, Pr, V1

and V2. In all profiles drawn in Figs. 1–4 we fixed

(R = 10); (D = 1); a = 1/9; and varied M = 0, 5, 10;
10: V1 = 0.3, V2 = 0, / = 2.5 in (a); V1 = 0, V2 = 0.1, / = 1 in (b).

= 1, Pr = 0, 5, 10: V1 = 0, V2 = 0, / = 0 in (a); V1 = 0.5, V2 = 0,



Fig. 6. The variation of h with g for R = 10, D = 1, a = 1/9,M = 10, Pr = 1, Ec = 0, 5, 10: V1 = 0, V2 = 0, / = 0 in (a); V1 = 0.5, V2 = 0,

/ = 2.5 in (b); V1 = 0, V2 = 0.5, / = 2.5 in (c).
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/ = 0, 1, 2.5; V1 = 0, 0.3, 0.5; and V2 = 0, 0.1, 4. It is

found in Fig. 1a and b that when V1 varies from 0 to

1 then f/Xl varies from (�1 ! 1) to (�1! 2). Further,

Fig. 3a and b indicate that g/Xl is large when V1 is in-

creased from 0 to 0.5. It is further observed from Fig.

2c that f/Xl and g/Xl decrease when V1 is negative. Also,

similar observations hold in Figs. 1c and 3c when V2 = 4

and V2 = 0.1, respectively. In Figs. 1–4, the effect of M

on the velocity profiles is also taken into account. It is

concluded that the applied magnetic field tends to decel-

erate the layer thickness. Figs. 1c and 2b and 3b and 4a

indicate that for large / = 0 ! 2.5 the layer thicknesses

in f/Xl and g/Xl increase.
The dimensionless temperature distributions h versus

g are plotted in Figs. 5 and 6 for different values of Ec,

Pr, /, V1, V2, EcPr, and fixed R = 10, D = 1, a = 1/9,

and M = 1. In Fig. 5, Ec = 1, Pr = 0, 5, 10, V1 = 0, 0.5,

V2 = 0, 0.5, and / = 0, 2.5. For Pr P 0 and Ec = 1 we

get PrEc P 0 and thus h increases for large values of

Pr. Also it is observed from Fig. 5a and b or Fig. 5a

and c that for large values of disk velocities V1 = 0.5,

V2 = 0 and V1 = 0, V2 = 0.5, respectively, h increases

and vice versa. Fig. 6 is sketched for Pr = 1, M = 10,

and Ec = 0, 5, 10. It is obvious from Fig. 6 that h in-

creases with Eckert number, V1 and V2. Thus it is con-

cluded from Fig. 6 that when the product

PrEc P 0, 5, . . . , the velocity increases and thus the

boundary layer thickness decreases.
7. Conclusion

In this paper the effects of Hall current and heat

transfer are analyzed on the flow of an Oldroyd-B fluid

between eccentric rotating disks. The governing equa-

tions resulting from the momentum and energy laws

are solved analytically to examine the sensitivity of the

flow to the parameters that are used in the modeling

of the problem. From the presented analysis, the work

findings can be summed up as:

1. It is found that with an increase in V1 and V2 the

velocity increases and with the decrease in V1 and

V2 the velocity decreases. The same is true for the

heat transfer case.

2. With an increase in Hartmann numberM the velocity

increases and hence the boundary layer thickness

decreases.

3. It is worth mentioning that the layer thicknesses

increase with the Hall parameter / for fixed Hart-

mann number M although decrease with increase in

M for a fixed Hall parameter /.
4. When the magnetic Reynolds number is very small,

the flow pattern with Hall effects is remarkably simi-

lar to that for non-conducting flow. Of course, the

assumption of very small magnetic Reynolds number

will be valid for flow of liquid metals or slightly ion-

ized gas. For a slightly ionized gas, the electron pres-
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sure gradient term in Eq. (2.7) is negligible. However,

for a fully-ionized gas, the last term in Eq. (2.7) is sig-

nificant with pe = p/2, while the ion-slip term can be

ignored.

5. / ! 1 will give the result of hydrodynamic case and

/ = 0 gives us the results for the magnetohydrody-

namic case.

6. The Hall current also contribute to steady flow when

an Oldroyd-B fluid is not identical to Newtonian

fluid.

7. The increase in Pr(0, 5, 10) and fixed Ec = 1 increases

the velocity. When Pr is small the effect of viscous dis-

sipation Ec is very small.

8. It is noted that the smaller the value of the Prandtl

number the thicker is the steady state thermal bound-

ary layer and hence the longer it takes for the temper-

ature to reduce to its ambient value.

9. The thermal boundary layer thickness increases with

the viscoelastic effects as the momentum boundary

layer thickness does, while it decreases with increase

in Pr.
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